SYNTHESE UND REAKTIONEN Et₂NP-VERBRÜCKTER CARBONYLEISENCLUSTER

KONRAD KNOLL, GOTTFRIED HUTTNER* und KASPAR EVERTZ

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz (B.R.D.) und Anorg.-Chem. Institut der Universität, Im Neuenheimer Feld, 6900 Heidelberg (B.R.D.)

(Eingegangen den 10. November 1986)

Summary

Et₂NPCl₂ reacts with Fe₂(CO)₉ to give compound (CO)₄Fe(PCl₂NEt₂) (1), which with additional Fe₂(CO)₉ gives the compounds (μ_2 -Et₂NPCl)(μ_2 -Cl)Fe₂(CO)₆ (2); (μ_3 -Et₂NP)Fe₃(CO)₁₀ (3) and (μ_3 -Et₂NP)₂Fe₃(CO)₉ (4). Photochemical reaction of 3 with diphenylacetylene yields the cluster 5 in which the C₂ entity of the alkene is added to a PFe edge of the decarbonylated educt 3. The (μ_3 -Et₂NP) bridged cluster 4, upon photochemical activation, adds diphenylacetylene, without decarbonylation, across the phosphorus centers to give 6. Excess diphenylacetylene leads to a substitution derivative of 6 (7) in which two carbonyl groups in 6 are substituted by μ_2 - η^2 -bonded diphenylacetylene. The structure of 7 has been confirmed by an X-ray diffraction analysis.

Zusammenfassung

 Et_2NPCl_2 reagiert mit $Fe_2(CO)_9$ zum Komplex $(CO)_4Fe(PCl_2NEt_2)$ (1) der sich mit weiterem $Fe_2(CO)_9$ zu den Verbindungen $(\mu_2-Et_2NPCl)(\mu_2-Cl)Fe_2(CO)_6$ (2); $(\mu_3-Et_2NP)Fe_3(CO)_{10}$ (3) und $(\mu_3-Et_2NP)_2Fe_3(CO)_9$ (4) umsetzt. 3 reagiert mit Diphenylacetylen photochemisch zum Cluster 5, in dem die C₂-Einheit des Alkins an eine PFe-Kante des decarbonylierten Edukts 3 addiert ist. Der zweifach μ_3 - Et_2NP -verbrückte Cluster 4 addiert bei photochemischer Aktivierung Diphenylacetylen ohne Decarbonylierung an die Phosphorzentren zu 6. Überschüssiges Diphenylacetylen führt zu einem Substitutionsderivat von 6 (7), in dem zwei Carbonylgruppen von 6 durch im μ_2 - η^2 -gebundenes Diphenylacetylen ersetzt sind. Die Struktur von 7 wird durch eine Strukturanalyse belegt.

Einleitung

Dihalogenphosphane RPCl_2 sind nützliche Bausteine für die Synthese RPverbrückter Cluster [1]. Unter kontrollierten Bedingungen reagieren sie mit $\text{Fe}_2(\text{CO})_9$ wahlweise unter Bildung ein- bis vierkerniger Komplexe [2]. Wir haben die hierfür entwickelten Methoden [2] auf Et_2NPCl_2 als Edukt übertragen. Der Et_2N -Rest sollte zum einen als funktionelle Gruppe leicht austauschbar sein und damit den Weg für weitere gezielte Clusterreaktionen öffnen; zum anderen sollte er elektronisch von den bisher in diesem Reaktionssystem untersuchten Resten so deutlich verschieden sein, dass für die mit Et_2NP -Gruppen verbrückten Cluster andere Reaktionen des Clustergerüstes erwartet werden könnten, als sie für Alkyl- und Arylreste bisher beobachtet wurden [1]. Wir berichten hier über den Aufbau zweier dreikerniger Et_2NP -verbrückter Cluster und über deren Reaktionen mit Alkinen.

Präparative Ergebnisse

Synthese der Cluster 1-4

 Et_2NPCl_2 lässt sich mit $Fe_2(CO)_9$ zum $Fe(CO)_4$ -Derivat 1 umsetzen; 1 reagiert mit weiterem $Fe_2(CO)_9$ zu den Verbindungen 2 bis 4 (Gl. 1).

Die Bedingungen, unter denen 2, 3 oder 4 selektiv entstehen könnten, wurden nicht untersucht; die Erfahrung im gleichen Reaktionssystem mit anderen Phosphanen RPCl₂ lassen eine Optimierung in diesem Sinn allerdings möglich erscheinen [2]. Die Verbindungen 1 bis 4 entsprechen in ihren spektroskopischen Eigenschaften jeweils den bekannten Vertretern [2] des jeweiligen Verbindungstyps (siehe exp. Teil). Ihre Temperaturbeständigkeit ist, jedenfalls für 1, 2 und 4, deutlich geringer als die entsprechender Verbindungen mit Alkyl- oder Arylresten am Phosphor. So zersetzt sich 1, das als Öl anfällt, in wenigen Tagen auch bei -40 °C merklich, 2, das als bei 39°C schmelzende Festsubstanz vorliegt, ist bei -20°C ebenso wie kristallines 4 über Monate haltbar. Der kristalline Cluster 3 ist unter Schutzgas auch bei 20°C unbegrenzt haltbar.

Die chromatographische Reinigung der Substanzen wird durch die Reaktionsbereitschaft der P-N-Gruppierung erschwert: Die Komplexe werden bei längerer Verweilzeit auf Kieselgel – offenbar kovalent – gebunden. Für die Verbindung 3 wurde nachgewiesen, dass sie mit Methanol reagiert – vermutlich durch Austausch der Et₂N- gegen eine OMe-Gruppe. Die Austauschbarkeit des NR₂-Substituenten an einer μ_3 -PNR₂-Gruppe gegen Halogene X durch HX ist nachgewiesen [3]. Im Prinzip stellen damit die Cluster 3 und 4 nützliche Edukte für die Synthese von am Phosphor funktionalisierten Derivaten dar.

Reaktionen der Cluster 3 und 4 mit Alkinen

Der Cluster 3 reagiert bei photochemischer Aktivierung wie seine Homologen, die phosphorständige Alkyl- oder Arylgruppen aufweisen, unter Decarbonylierung und Anlagerungen des Alkins zu 5 (Gl. 2). Isolierung und Reaktivität von 5 sind

beschrieben [4].

Auch der zweifach μ_3 -NEt₂P-verbrückte Cluster reagiert zunächst mit Diphenylacetylen unter Bestrahlung genauso wie seine μ_3 -RP- (R = Aryl) verbrückten Homologen: Diphenylacetylen wird bei photochemischer Aktivierung als Brücke zwischen die beiden Phosphorzentren des Clusters addiert [5]. Die Reaktion verläuft vermutlich über ein phosphozentriertes Diradikal [5] (Gl. 3).

Mit einem grossen Überschuss von Diphenylacetylen und bei längeren Bestrahlungszeiten entsteht neben 6 zusätzlich 7. Auch hierin verhält sich 4 wie sein Homologes [5]. Für die zu 7 analogen Komplexe, welche statt $PNEt_2$ -Gruppen PPhoder *p*-Anisylgruppen tragen, war aus NMR-spektrokopischen Daten die Gerüststruktur von 7 bereits richtig abgeleitet worden [5]. In diesen Fällen hatten sich jedoch, auch nach vielen Mühen, keine für eine Strukturanalyse brauchbaren Einkristalle erhalten lassen. Für 7 selbst konnten nun Einkristalle – von immer noch schlechter Qualität – gezüchtet werden, welche jetzt auch die röntgenstrukturanalytische Bestätigung des indirekt abgeleiteten [5] Gerüstbaus erlaubten (Fig. 1, Tab. 1) [6].

Der wesentliche Unterschied gegenüber der früher abgeleiteten Struktur besteht in der Verteilung der sieben CO-Gruppen auf das Eisengerüst: 7 enthält zwei

Fig. 1. Die Struktur von 7.

 $Fe(CO)_2$ neben einer $Fe(CO)_3$ -Gruppe. Ferner ist die zusätzliche Acetyleneinheit nur an zwei Eisenzentren gebunden, die von ihr durch π -Wechselwirkung mit der Dreifachbindung abgesättigt werden.

TABELLE 1

AUSGEWÄHLTE ABSTÄNI	DE (pm) DER	VERBINDUNG 7 ^a	[6]
---------------------	-------------	---------------------------	-----

Fe(1)-Fc(2)	274.8(4)	P(1)-C(31)	178(2)	
Fe(1)-Fe(3)	276.6(4)	P(1) - N(1)	168(2)	
Fe(1) - P(1)	225.2(5)	P(2)-C(41)	183(2)	
Fc(1)-P(2)	220.4(5)	P(2)-N(2)	166(1)	
Fe(2)-Fe(3)	246.4(4)	C(31)-C(41)	135(3)	
Fe(2)-P(2)	217.6(7)	C(31)-C(37)	152(2)	
Fe(2)-C(51)	203(2)	C(41)-C(47)	150(2)	
Fe(2)-C(61)	199(2)	C(51)-C(61)	132(2)	
Fe(3) - P(1)	218.0(7)	C(51)-C(57)	144(2)	
Fe(3)-C(51)	204(2)	C(61)-C(67)	147(2)	
Fe(3)-C(61)	199(2)			

Abweichung von der besten Ebene P(1) Fe(3) Fe(2) P(2) (pm): P(1) 1.6, Fe(3) - 1.9, Fe(2) 1.9, P(2) - 1.6, Fe(1) - 164.8, C(51) - 72, C(57) - 187, C(61) 59, C(67) 167, C(31) 134, C(41) 134, N(1) - 17.7, N(2) - 28.6

⁴ In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle.

Experimenteller Teil

Methoden und Instrumente entsprechen denen, die in Lit. Zit. 5 angegeben sind.

Darstellung der Verbindung 1 [6]

13.92 g (80 mmol) (NEt₂)PCl₂ werden zusammen mit 14.56 g (40 mmol) Fe₂(CO)₉ in 500 ml Toluol 2 h bei 80°C gerührt. Dabei bildet sich eine klare orangerote Lösung. Anschliessend wird das Lösungsmittel am Hochvakuum (10^{-2} mbar) bei 20°C entfernt, der orangerote Rückstand in 200 ml n-Pentan aufgenommen und über 5 cm Kieselgur filtriert. Nach Abziehen des Lösungsmittels verbleibt ein orangerotes Öl. Ausbeute: 17.5 g (64%). IR (n-Pentan): ν (CO) cm⁻¹; 2061s, 2006s, 1977s, 1969s; ³¹P-NMR (Toluol, rel. ext. 85% H₃PO₄, 0°C): 188.2 ppm.

Darstellung der Verbindungen 2-4

40 g (110 mmol) Fe₂(CO)₉ und 5.36 g (15.7 mmol) ((NEt₂)PCl₂)Fe(CO)₄ werden in 600 ml Toluol 3 h bei 45°C gerührt. Zunächst nimmt die Lösung eine himbeerrote Farbe an, die sich Richtung braunrot vertieft. Zu Beginn der Reaktion tritt eine starke CO-Entwicklung ein. Nach beendeter Reaktion wird das Lösungsmittel am Hochvakuum entfernt, der dunkelbraune Rückstand in 500 ml n-Pentan aufgenommen und zusammen mit 10 g Kieselgel 2 min gerührt. Anschliessend muss die Suspension sofort über 5 cm Kieselgel filtriert werden. Das Kieselgel wird mit 100 ml n-Pentan nachgewaschen. Die vereinigten n-Pentan-Lösung werden auf 20 ml eingeengt und erneut über Kieselgel $(3 \times 10 \text{ cm}, 20^{\circ} \text{C})$ filtriert. Die Filtration sollte nach 10 min abgeschlossen sein. Mit n-Pentan lassen sich die Verbindungen 2 und 4 als orangegelbe Zone eluieren. Mit n-Pentan/ CH_2Cl_2 (20/1) wandert 3 als rotbraune Zone. Kristallisation aus 50 ml n-Pentan bei -80° C ergibt analysenreines 3. Das orangegelbe Eluat, das 2 und 4 enthält, wird auf 10 ml eingeengt und über Kieselgel chromatographiert (Säulendimension 2×40 cm, -25 °C). Mit n-Pentan wird 2 als orangerote Zone eluiert, das nach Einengen der Lösung auf 5 ml nach Kristallisation bei -80° C analysenrein vorliegt. 4 läuft mit n-Pentan/CH₂Cl₂ (40/1) als orangefarbene Zone und verbleibt nach Abziehen des Eluens als orangegelbes Öl. das nach Zugabe von 5 ml n-Pentan bei - 80°C kristallisiert.

2: Ausbeute 0.34 g (5%), Schmp. 39°C. Analyse: Gef.: C, 26.65; H, 2.39; N, 3.04; Fe, 24.80; P, 7.47. $C_{10}H_{10}Cl_2Fe_2N_1O_6P_1$ (453.77) ber.: C, 26.47; H, 2.22; N, 3.09; Fe, 24.62; P, 6.83%. IR (n-Pentan): ν (CO) 2087m, 2047vs, 2021s, 2007sh, 2003vs, 1993vw cm⁻¹. ¹H-NMR (CDCl₃, rel. int. TMS, 25°C): 1.14 (T, 5H, J(HH) 7.1 Hz); 1.28 (T, 5H, J(HH) 7.1 Hz); 3.1–3.7 (M, 4H) ppm. Die Beobachtung von zwei Signalen (1.14 und 1.28 ppm) für die Methylgruppe im Verhältnis 5/1 ist auf das Vorliegen von zwei Stereoisomeren von 2, in denen entweder die Et₂N-Gruppe oder der phosphorständige Chlorsubstituent die equatoriale Position einnehmen, zurückzuführen. MS: Die Massenangaben beziehen sich auf ³⁵Cl; der Molpeak und dessen Decarbonylierungsprodukte weisen die typische (9/6/1) Cl₂-Isotopenverteilung auf. m/e (I_r): $[M^+]$ 453(5); $[M^+ - nCO]$ (n = 1-6) 425(8), 397(23), 369(20), 341(22), 313(42), 285(100); [FePNEt₂⁺] 159(97); [Fe⁺] 56(81).

3: Ausbeute 2.28 g (26%), Schmp. > 200 °C (langs. Zers.). Analyse: Gef.: C, 30.23; H, 2.01; N, 2.59; Fe, 30.16; P, 5.88. $C_{14}H_{10}Fe_3N_1O_{10}P_1$ (550.75) ber.: C, 30.53; H, 1.83; N, 2.54; Fe, 30.42; P, 5.62%. IR (n-Pentan): ν (CO) 2085m, 2040s, 2030vs, 2012s, 1997m, 1994sh, 1986w, 1968w, 1847w cm⁻¹. ¹H-NMR (CDCl₃, rel. int. TMS, 25°C): 1.48 (T, 6H, J(HH) 7.2 Hz); 3.89 (Dublett von Quartett, 4H, J(PH) 12.7, J(HH) 7.2 Hz) ppm. ³¹P-NMR (Toluol, rel. ext. 85% H₃PO₄, 0°C): 598.6 ppm. MS m/e (I_r): $[M^+]$ 551(17); $[M^+ - nCO]$ (n = 1-10) 523(8), 495(5), 467(11), 439(55), 411(12), 383(43), 355(58), 327(25), 299(27), 271(52); $[Fe_3PH^+]$ 200(33); $[Fe_3P^+]$ 199(35); $[Fe^+]$ 56(100).

4: Ausbeute 1.85 g (38%), Schmp. 64°C. Analyse: Gef.: C, 32.76; H, 3.22; N, 4.28. $C_{17}H_{20}Fe_{3}N_{2}O_{9}P_{2}$ (625.85) ber.: C, 32.63; H, 3.22; N, 4.48%. IR (n-Pentan): ν (CO) 2066w, 2029s, 2010s, 1997m, 1985sh, 1981m, 1972w cm⁻¹. ¹H-NMR (Benzol- d_{6} , rel. int. TMS, 25°C): 0.98 (T, 12H, J(HH) 7.2 Hz); 3.10 (M, 8H) ppm. ³¹P-NMR (Toluol, rel. ext. 85% H₃PO₄, 0°C): 400.6 ppm. MS m/e (I_{r}): [M^{+}] 626(6); [$M^{+} - n$ CO] (n = 1-9) 598(24), 570(4), 542(17), 514(12), 486(78), 458(34), 430(28), 402(34), 374(100); [Fe₃P₂NEt₂⁺] 303(85); [Fe₃P₂⁺] 230(98); [NEt₂⁺] 72(60).

Darstellung der Verbindungen 6 und 7

Analog Lit. Zit. 5 werden 580 mg (0.93 mmol) 4 zusammen mit 2.5 g (14 mmol) Diphenylacetylen, gelöst in 50 ml CH_2Cl_2 , 14 h bei -20 °C bestrahlt. Zwecks Konvektion leitet man N₂ durch die Lösung (1 Blase/s). Die Farbe der Lösung ändert sich allmählich von orangerot nach rotbraun. Es ist zweckmässig, die Reaktion IR-spektroskopisch zu verfolgen und die Bestrahlung abzubrechen, wenn der Anteil an 4 in der Lösung auf ca. 10% zurückgegangen ist. Nach Beendigung der Bestrahlung wird das Lösungsmittel bis auf ca. 2 ml abgezogen, der Rückstand mit 20 ml n-Pentan versetzt und auf eine Kieselgelsäule (n-Pentan) überführt. Mit n-Pentan/CH₂Cl₂ (10/1) lässt sich unumgesetztes 4 zusammen mit Diphenylacetylen als orangerote Zone eluieren. 6 wandert mit n-Pentan/CH₂Cl₂ (5/1) als rote Zone und ist nach Umkristallisation aus n-Pentan bei -30 °C (rote Kristalle) analysenrein. Die braune Zone, die sich mit n-Pentan/CH₂Cl₂ 2/1 eluieren lässt enthält 7. 7 liegt nach Umkristallisation aus n-Pentan bei -80 °C in Form analysenreiner schwarzer Kristalle vor.

6: Ausbeute 230 mg (31%), Schmp. 93–115°C (langs. Zers.). Analyse: Gef.: C, 46.28; H, 3.86; N, 3.39. $C_{31}H_{30}Fe_3N_2O_9P_2$ (808.11) ber.: C, 46.31; H, 3.76; N, 3.48%. IR (n-Pentan): ν (CO) 2057m, 2027vs, 2004m, 1998w, 1991s, 1986sh, 1986sh, 1969m, 1959w, 1955w cm⁻¹. ¹H-NMR (CDCl₃, rel. int. TMS, 25°C): 0.78 (T, 12H, *J*(HH) 7.1 Hz); 2.8–3.1 (M, 8H); 7.1–7.3 (M, 10H) ppm. ³¹P-NMR (Toluol, rel. ext. 85% H₃PO₄, 0°C): 197.0 ppm. MS: Beim Aufheizen der Probe auf 80°C tritt Zersetzung zu 4 und Diphenylacetylen ein. Das *M*⁺-Ion bzw. dessen Fragmentation können bei keiner Temperatur beobachtet werden.

7: Ausbeute 80 mg (9%), Schmp. 148 °C. Analyse: Gef.: C, 55.18; H, 4.06; N, 3.03; P, 6.59. $C_{43}H_{40}Fe_3N_2O_7P_2 \cdot 1/2 C_5H_{12}$ (962.37) ber.: C, 56.79; H, 4.82; N, 2.91; P, 6.44%. IR (n-Pentan): ν (CO) 2035m, 1995sh, 1991vs, 1972m, 1966s, 1948m, 1938sh cm⁻¹. ¹H-NMR (CDCl₃, rel. int. TMS, 25°C): 0.88 (M, 12H); 3.40 (M, 8H); 6.98-7.95 (M, 20H) ppm. ³¹P-NMR (Toluol, rel. ext. 85% H₃PO₄, 0°C): 287.9 ppm. MS m/e (I_r): $[M^+]$ 926 (0.01); $[M^+ - nCO]$ (n = 1-7) 898(0.02), 870(0.06), 842(0.10), 814(0.04), 786(0.13), 758(0.17), 730(0.21); $[(C_6H_5C)_2^+]$ 178(100). Wegen starker thermischer Zersetzung der Probe beschränkt sich die Interpretation des Spektrums auf den Massenbereich > 700.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und den Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit. Frau M. Glas sind wir für die Durchführung der Elementaranalysen (C, H, N sowie Fe und P) dankbar.

Literatur

- 1 Übersicht: G. Huttner und K. Knoll, Angew. Chem., im Druck.
- 2 H. Lang, L. Zsolnai und G. Huttner, J. Organomet. Chem., 282 (1985) 23.
- 3 B. Pritzlaff, Dissertation, Universität Konstanz, 1985; G. Huttner und B. Pritzlaff, unveröffentlicht.
- 4 K. Knoll, G. Huttner, L. Zsolnai und O. Orama, J. Organomet. Chem., im Druck.
- 5 K. Knoll, G. Huttner und L. Zsolnai, J. Organomet. Chem., 307 (1986) 237.
- 6 7: Kristallisation aus n-Pentan bei -80° C. $C_{43}H_{40}Fe_3N_2O_7P_2 \cdot 1/2$ C_5H_{12} , monoklin, $P2_1/c$, a 2102(3), b 1225.5(8), c 1912(2) pm, β 115.56(8)°, Z = 4, V 4445 × 10° pm³, 3170 unabhängige Reflexe $(I \ge 3\sigma)$, $R_1 = 0.101$, $R_w = 0.099$, ω -Scan $(\Delta \omega = 1^{\circ}, 1.8 \le \dot{\omega} \le 29.3^{\circ} \text{ min}^{-1}, 2 \le 2\theta \le 47^{\circ}, T$ 240 K. Strukturlösung: Die Lagen der Eisen- und Phosphoratome wurden nach der Patterson-Methode ermittelt, die Positionen der übrigen Atome durch Differenz-Fourier-Synthese bestimmt (Lit. Zit. 7). Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52309, der Autoren und des Zeitschriftenzitats angefordert werden.
- 7 SHELXTL: G. Sheldrick, SHELXTL, Revision 4, Göttingen, 1984.